

APPROACH METHOD OF CURRENT COMPETITIVE MARKET -AGILE INDUSTRIAL CORPORATION

GHERGHEL Sabina¹, ŞUTEU Marius¹, ALBU Adina¹

¹ University of Oradea, Romania, Department of Textile Leather and Industrial Management, Faculty of Power Engineering and Industrial Management, Delavrancea, nr 4, Oradea, Romania1, E-mail1: <u>textile@uoradea.ro</u>

Corresponding author: Gherghel Sabina, E-mail: <u>sgherghel@uoradea.ro</u>

Abstract: The term "agility" - agile enterprise - was introduced by a group of American researchers led by R.Dove as a result of some studies in a program sponsored by the US government, a program that primarily aimed at exploring the possibilities of making up production systems which could compete with the efficient production system "lean", introduced in most Japanese companies. Researchers involved in this program have formed Agility Forum, which aims to develop the concepts introduced. In 2001 appears the first paper, by R. Dove, entitled "Response Ability - Understanding the Agile Enterprise", John Wiley and Sons Editors, in which was synthesized the phase of research field.

Agility can be defined as "the ability with which an organization manages to develop successfully in a business environment whose changes are unpredictable." Being agile means to control change, to notice market opportunities and by being continuously innovating, to succed on the market. The purpose of this paper is to support the idea that agility is a feature derived from the design and also to show that by applying the principles of RRS, which characterize agile systems, it is confirmed the fact that any industrial production system which wishes to be agile it should be designed.

Key words: agile enterprise, production system, market, ability.

1. INTRODUCTION

The level of agility of a company, or of the component parts of its structure is a function whose variables are represented by the opportunistic management - offering reliability, on one hand and innovation management - leadership, on the other hand. [1], [2].

Which of the variables is decisive is a relative question regarding the dynamic competitive environment in which the organization operates. The fact that we can speak of a degree of agility leads us to the need to quantify conceptually, so that later we can have the possibility to compare similar items according to their degree of agility. [3], [4], [5].

2. INDUSTRIAL CORPORATION AGILITY AND ITS DESIGN

Being "agile" requires an amplification of a company's leadership or its "reliability". Figure 1 shows a quadrant of agility, whose coordinates are given by "reliability" (reactive) and leadership (proactive): [6], [7], [8].

- Leadership is crucial when leaders are systematically choosing the optimal solutions and any misstep leads to the advantage of competitors, positioning leaders in reactive situations. Any opportunistic competitor, with good reliability, will do nothing else but to wait for the other's mistake, actually ceasing to innovate, to be proactive.

- Choosing an area of the quadrant agility actually represents for any enterprise, a fundamental strategic option to differentiate it from its competitors. [9]. At this point it is necessary to find answers to the following questions:

a. How innovative, opportunistic corporate management must be, regarding the needs of the competitive environment in which it operates?

b. At what speed are the market rules of corporate products changing?

c. Is the corporation able to respond quickly enough to market evolution?

d. What are the principles and methods that allow the design of an agile enterprise?

The last question is perhaps the most important of all, and the management of a modern enterprise is forced to respond. [10].

Proactive (Leadership)

Fig. 1: Agility quadrant

The interpretation of coordinates and business elements is as follows:

Reliability: It permanently looks for answers from consumers' needs and responding quickly to the emergence of market opportunities, opportunistic, reactive, robust attitude;

Leadership: It introduces a new way of seeing business, it discovers new meanings in the existing status, it changes rules, it captures a new perception, and it has an atypical thinking;

Business elements: The position of the market enterprise, technological level of production, supply strategy, operating modes, human resources strategy, new product development, innovation level.

For a better understanding of the approach, the definition of specific terms is necessary:

- System – a group of modules that interact within a common structure that serves a unique purpose.

- Framework structure – a set of standard procedures governing interactions between the modules of a system compatible.

- Module – a subunit of a system that has intrinsic: identity, purpose and capability in its interaction with other modules of the system considered.

3. PRINCIPLES OF RRS (REUSABLE, RECONFIGURABLE, SCALABLE) SYSTEMS AND THEIR USE IN AGILITY DESIGN

The principles underlying the RRS system resulted both from observations on the characteristics of such systems and the observation of the characteristics of systems built by people. RRS systems principles are listed in the following table:

Modules existence	The system is composed of distinct,	
	separable modules, which are not	
	integrated into the assembly	
Compatibility when connected	The systems' modules contain standard	
	interface, which facilitate their	
	connection or disconnection, within the	
	actions taking place in the system	
Facilities for reusability	Management of modules assembly	
	includes tools that allow its	
	reconfiguration and maintenance	
Non-hierarchical interactions	There are interactions between	
	system's modules, direct	
	communication and negotiation on	
	non-hierarchical basis	
Dissemination of capacity for	The decision is distributed to the	
decision	modules, but it can be rapidly	
	recentralised if the neccessity arises	
The distribution of control tasks	Control for fulfilling the objectives of	

Table 1	: The	principles	of RRS	systems
---------	-------	------------	--------	---------

ANNALS OF THE UNIVERSITY OF ORADEA FASCICLE OF TEXTILES, LEATHERWORK

	<u> </u>	
and information	the module is performed at the modul	
	level, information is circulating locally,	
	but is globally accessible	
Establishing their own relations	The existence of some relations and	
	common action programs established	
	between modules, with its own	
	dynamic	
Flexible capacity	Changes in capacity at the module	
	level, without restriction set globally,	
	including feature referring to the	
	number of staff	
Modules redundancy	The ability to decide fluctuations of	
	capacity and decide tolerances of	
	errors and also their correction mode	
Evolutive structure	The existence of open structures, able	
	to adopt and create new module,	
	identical or different from the existing	
	ones	

Application of RRS principles in designing the agility of production systems leads to safety regarding the approach to current competitive market. [11].

	Tuble 2. Using the KKS pr	rinciples when designing the	
RRS designing principles	Production equipment (cluster type machines)	Production processes (flexible manufacturing cell)	Production enterprises
Modules existence	Transfer encapsulated modules, storage modules, utility modules, transfer boxes	Flexibleequipment,modulatedworkstations,pallettelehandlers,servers on rails	Design, engineering, manufacturing, assembly, distribution of resources, made modularly
Compatibility on connection	Human, mechanical, electrical and also standard and common control interfaces	System interfaces: mechanical, electrical, human systems	Procedures informational system, interfaces with the exterior
Facilities for re-use	Extension / modernization of equipment by adding new modules, their standard maintenance	Equipment without massive foundations, light, simple and fast to move in other production configurations	Flexible departments of supply / sale, which have many external sources, flexible in their turn
Non-hierarchical interactions	The modules in the process decide on actions to be taken in order to achieve their own targets, low control for module level	Equipment which act autonomously solving problems including the interface level	Management systems that allow free allocation of resources, both inside and outside the organization
Disseminating the capacity for decision making	The equipment can be quickly reconfigured at the process modules level, if the situation requires it; reconfiguration is done with maximum speed	Reprogramming production is done in real time and is instantly transmitted to cells or modules, if the necessity arises	Opportunities offered by the market are seized and distributed quickly at the modules level. The decision is taken at the level where lies the problem that needs to be decided
The distribution of control tasks and information	"Smart" process modules that keep their own records which build and evaluate their characteristic operating curves	Operational programs and their history are contained in the equipment; tasks requirements are addressed to the interface when necessary	Integrated information system at organization level, a system that uses autonomous online databases from the process when necessary
Establishing their	Real-time control system	The software at the level	Integrated command in

Table 2: Using the RRS principles when designing the agility

own relations	that makes modules being	of control cells allows	production flows level,
	available anytime for	dynamic changes of	allowing their rapid
	reconfiguration and	processes that are	modification
	reprogramming if needed	performed at the working	
		cells level	
Flexible capacity	Equipment that can be easily	Manufacturing cells that	The existence of
	interconnected in extended	allow easy incorporation	unrestricted resources
	assemblies in order to	of similar modules	available anytime for
	perform similar tasks		multiplying the number of
			productive modules
Modules redundancy	The identical utilities basis	Cells containing multiples	The system contains
	of equipment, which allows	of the same type of	duplicate of capabilities,
	the processes duplication on	modules, which allow for	for example in resources
	the same base or different	capacity fluctuations	allocated to the
	basis		production
Evolutive structure	The basic structure of the	The various utilities or	The enterprise
	equipment allows the	transport equipment can	information system
	assimilation of new types of	be extended without	consists of an open
	modules and introduction of	restriction imposed by	architecture based on
	new technologies	cells or modules from the	server-client relationship.
		composition	Ĩ

4. CONCLUSIONS

1. When designing agile systems, which could be understood as either the whole enterprise or its critical components such as operating procedures on the market, strategies of supply-sale or production processes as a whole, means to include in the inner structure of the system the power to react anytime and to any type of change.

2. Any manager is interested in both the static, but especially in the dynamic aspects of the enterprise system; considering the static aspect being the architecture of the ensemble and the dynamic one, the perpetual effort daily to reconfigure the architecture in order to make it operational in the competitive environment offered by the market.

Sustaining an opportunistic/innovative profile, which equals being agile, means, first of all, to possess a type of architecture composed of easily reconfigurable, reusable and scalable systems.

REFERENCES

[1]. R. Dove, "Design principles for highly adaptable business systems; Chapter from Maynard Industrial Handbook" McGraw-Hill, 2001

[2]. R. Dove, "Response Ability-Understanding the Agile Enterprise" John Wiley, 2001

[3]. E.O. Reischauer, "*The Japanese Today Change and Continuity*" Harward University Press, Illinois, 1998

[4]. R.F. Hartley "Management Mistakes and Successs" Willey&Sons, New York, 1994

[5]. R. Wild, "Essentials of production and operations management .Text and Cases" Cassel London, 1998

[6].C.J. McMillan, "The Japanese Industrial System" D. Grulter&Co., New York, 1996

[7]. M. Hammer, J. Champy, "*Reengineering the corporation: It is time to rething your assumptions*", Soundview Executive Book Summaries, 1998

[8]. J.P. Womack, D. Jones, "*The machine that changed the world: the story of lean production*" New York, Harper Perennial, 1991.

[9]. S. Gherghel, M. Prichici, "*The influence of competitive markets on industrial corporations structure*" International Scientific Conference "Innovative solutions for sustainable development of textiles industry", vol II, pp.80/95, 2011.

[10]. A. Rushton, P. Chroucher, P. Baker, "*The handbook of logistics and distribution management*" 4 th Edition, Ed. Kogan Page, London, 2010.

[11]. R.L. Daft, "Organization Theory and Design" South/Westwrn CENGACE Learning, 2010.